RS Aggarwal Class 7 Mathematics First Chapter Integers Exercise 1A Solution

RS Aggarwal Class 7 Mathematics First Chapter Integers Exercise 1A Solution

EXERCISE 1A

(1) Evaluate:

(i) 15 + (- 8)

= 15 – 8

= 7

(ii) (- 16) + 9

= – 16 + 9

= – 7

(iii) (- 7) + (- 23)

= – 7 – 23

= – 30

(iv) (- 32) + 47

= – 32 + 47

= 15

(v) 53 + (- 26)

= 53 – 26

= 27

(vi) (- 48) + (- 36)

= – 48 – 36

= – 84

(2) find the sum of:

(i) 153 and – 302

= 153 + (- 302)

= 153 – 302

= – 149

(ii) 1005 and – 277

= 1005 + (- 277)

= 1005 – 277

= 728

(iii) – 2035 and 297

= – 2035 + 297

= – 1738

(iv) – 489 and – 324

= – 489 + (- 324)

= – 489 – 324

= – 813

(v) – 1000 and 438

= – 1000 + 438

= – 562

(vi) – 238 and 500

= – 238 + 500

= 262

(3) Find the additive inverse of:

(i) – 83

= 83

(ii) 256

= – 256

(iii) 0

= 0

(iv) – 2001

= 2001

(4) Subtract:

(i) 28 from – 42

= – 42 – 28

= – 70

(ii) – 36 from 42

= 42 – (- 36)

= 42 + 36

= 78

(iii) – 37 from – 53

= – 53 – (- 37)

= – 53 + 37

= – 16

(iv) – 66 from – 34

= – 34 – (- 66)

= – 34 + 66

= 32

(v) 318 from 0

= 0 – 318

= – 318

(vi) – 153 from – 240

.= – 240 – (- 153)

= – 240 + 153

= – 87

(vii) – 64 from 0

= 0 – (- 64)

= 64

(viii) – 56 from 144

= 144 – (- 56)

= 144 + 56

= 200

(5) Subtract the sum of – 1032 and 878 from – 34.

= – 34 – (- 1032 + 878)

= – 34 – (- 154)

= – 34 + 154

= 120

(6) Subtract – 134 from the sum of 38 and – 87.

= {38 + (- 87)} – (- 134)

= (38 – 87) + 134

= – 45 + 134

= 89

(7) Fill in the banks:

(i) {(- 13) + 27} + (- 41) = (- 13) + {27 + (- 41)}

(ii) (- 26) + {(- 49) + (- 83)} = {(- 26) + (- 49)} + (- 83)

(iii) 53 + (- 37) = (- 37) + (53)

(iv) 9- 68) + (- 76) = 9- 760 + (- 68)

(v) (- 72) + (0) = – 72

(vi) – (- 83) = 83

(vii) (- 60) – (- 1) = – 59

(viii) (- 31) + (- 9) = – 40

(8) Simplify:

{- 13 – (- 27)} + {- 25 – (- 40)}

= {- 13 + 27} + {- 25 + 40}

= 14 + 15

= 29

(9) Find 36 – (- 64) and (- 64) – 36. Are they equal?

∴ 36 – (- 64) = (- 64) – 36

L. H. S. = 36 – (- 64)

= 36 + 64 = 100

R. H. S. = (- 64) – 36

= – 64 -36 = – 100

No, they are not equal.

(10) If a = – 8, b = – 7, c = 6, verify that (a + b) + c = a + (b + c)

R. H. S. = (a + b) + c

= {- 8 + (- 7)} + 6

= – 8 – 7 + 6

= – 15 + 6 = – 9

R. H. S. = a + (b + c)

= – 8 + {(- 7) + 6}

= – 8 – 7 + 6

= – 15 + 6 = – 9 = L. H. S. (proved)

(11) If a = – 9 and b = – 6, show that (a – b) ≠ (b – a)

L. H. S. = (a – b)

= {(- 9) – (-6)}

= – 9 + 6 = – 3

R. H. S. = (b – a)

= {(- 6) – (- 9)}

= – 6 + 9

= 3 ≠ L. H. S. (proved)

(12) The sum of two integers is – 16. If one of them is 53, find the other.

Solution: The required integer is = – 16 – 53 = – 69

(13) The sum of two integers is 65. If one of them is – 31, find the other.

Solution: 65 – 31 = 34, therefore the other is 34.

(14) The difference of an integer a and (- 6) is 4. Find the value of a.

∴ a – (- 6) = 4

Or, a + 6 = 4

Or, a = 4 – 6

Or, a = – 2

(15) Write a pair of integers whose sum gives

(i) zero

Solution: 6 +(- 6) = 6 – 6 = 0

(ii) a negative integer

Solution: 4 + (- 9) = 4 – 9 = – 5

(iii) an integer greater than both the integers

Solution: (- 3) + (- 5) = – 3 – 5 = – 8

(iv) an integer greater than both the integers

Solution: 4 + 5 = 9

(v) an integer smaller than only one of the integers

Solution: 5 + (- 3) = 5 – 3 = 2

(16) For each of the following statements, write (T) for true and (F) for false:

(i) The smallest integer is zero. = F

(ii) – 10 is greater than – 7 = F

(iii) Zero is larger than every negative integer. = T

(iv) The sum of two negative integers is a negative integer. = T

(v) The sum of a negative integer and a positive integer is always a positive integer. = F

For more exercise solutions, Click Below –

Be the first to comment

Leave a Reply

Your email address will not be published.


*